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Abstract. The in0uence functional is introduced as a kernel in an integral equation that gives 
the probability density at time t and position q in terms of the initial probability dens@. This 
functional is applied to tunnelling through a square barrier to determine the influence, at different 
times, of various regions of the incident packet on the transmitted peak. 

1. Introduction 

The primary object in the standard formulation of quantum mechanics is the probability 
amplitude +(q). However, ordinary probabilities are usually easier to understand and 
handle. In fact the connection between the wave formalism and the particle concept is 
accomplished, via Born's postulate, by associating the square of I+(q)1 with the probability 
density of the particle's presence at q [I]. The influence of the wavefunction at a spatial 
point qo at time to, on the wavefunction at a point q at time t is determined by a Green's 
function G(q, E; qo, to) (also called the 'propagator', 'transition amplitude', or 'influence 
function') in an integral equation involving amplitudes: 

+(s, 0 = 1 G(q, E :  40, Eo)+(qo, t0)dqo (1) 

(the integrals go from -CO to CO throughout this work unless stated otherwise), where 

140) (2) 
and 6 is the Hamiltonian. (A circumflex accent denotes quantum operators.) Here and in 
the following a structureless particle in one dimension is assumed for simplicity. Using (1) 
twice, the probability density, P(q,  f )  = 1+(q, t)lz, is not expressed as 

P ( q ,  = F h .  t ;  40, to)P(qo, t0)dqo. (3) 

iri(t-to)fi G(q,  t; qo, to) = We- 

s 
Instead, one finds 'non-diagonal' influences of different points, namely, 

P(q ,  t )  = // dq'dq"G(q, t; q', to)*+(q': t o ) * W " ;  to)G(q,t; 4". to). ' (4) 

There is, of course, nothing technically wrong with equation (4), but its interpretation in 
terms of particle probabilities becomes problematic because in the integrand there are only 
amplitudes. Is it possible to find an object F in (3) independent of the ' some function' 
P(q0, to) at least within a set of states? Such an F would allow the control of the future 
evolution of the system of interest by an appropriate localization of the initial state. (There 
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are two known solutions for 3 in (3) within the framework of ‘stochastic’ [2] and ‘casual’ 
[3] interpretations of quantum mechanics. However, none of these solutions are independent 
of the particular initial state and, therefore, they are useless in this sense.) 

The main objective of this paper is to describe an object, the influence functional, 
that answers positively our basic question asked above. It is a kernel, 3, in the integral 
equation (3) that gives a quantitative meaning to the inhence of the probability for being at 
a given point at time zero, on the probability for the presence at a second point of space at 
a later time. The name ‘functional’ is due to the fact that different ‘families’ of initial states 
require different 3’s. Within the corresponding family, 3 is independent of P(q0, to), as it 
corresponds to a Green’s function. (It is not, however, a me Green’s function for reasons 
explained later.) As an application, we shall study tunnelling through a square barrier by 
determining the influences of various ‘regions of the incident packet at different times on 
the transmitted peak. 

Even though the concepts and techniques involved are valid generally, most of the 
discussion centres on packets that are initially Gaussian, which is the most widely assumed 
form for interpreting collision experiments or in numerical wave-packet computations. The 
wavepacket is always assumed to come from the left. 

2. The influence functional: general theory 

A direct comparison of the known expression (4) and the formula (3), which is our objective, 
may seem discouraging. Indeed, several quantities or formalisms were examined and 
discarded as candidates to account for the point-to-point influences we are looking for. 
However, one of the approaches, the Weyl-Wigner formalism, will lead naturally to the 
desired object. 

The quantity 

(4 le-ifi(f-rd/fi l q 0 )  (qopj&-rd/h 14) (5) 
might have been considered relevant. After all, it gives the probability density at q. i when 
the particle was originally at 40. to. However, according to (4) this is clearly not sufficient 
to determine P(q,  t).  

We may also investigate the correlation between being at qo at time to and being at q 
at time t by means of the quantum correlation function 

where 4 is the position operator. However, since 4 and I? do not commute, this is a 
complex quantity. The interpretation of real and imaginary parts is problematic [2,4] and, 
in addition, it does not relate to an expression of the form (3) either. 

The Bohm interpretation provides an equation of the form (3) 15-71, In this interpretation 
the particles are well localized objects describing trajectories ‘guided’ by the wavefunction 
PI.  However, the kernel FBBahm = %B[t; qa, W O ) ~  - ql. where qB[t; qo. Wdl is, 
according to Bohm’s prescriptions, the position at time f of the particle that was initially 
at 40. is completely dependent on the initial state $00) and lacks predictive power. This 
means that every initial state requires a recalculation of 48. We shall return to this aspect 
in the final discussion. 

Finally, in the Weyl-Wigner equivalent formulation of quantum mechanics there is 
a phase-space ‘transition kernel’ T(q,  p ,  f ;  qo. PO. to) that links the Wigner functions, 
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representing the state of the system, at to and t. (T  is the quantum version of the 
classical kemel X, see (19) below. It is discussed in detail in [SI.) This is in principle an 
interesting quantity because it is completely independent of the initial state. However, it 
is cumbersome from the point of view of the numerical computation, and in fact it carries 
too much information when compared with the coordinate space kernel 3. An integration 
over momenta is required. Instead of first calculating the phase space transition kernel T ,  
an alternative route that avoids this step is now described. 

Since much of the following theory is based on the Weyl-Wigner equivalent formulation 
of quantum mechanics, the basic elements of this formalism are briefly reviewed [9-121. 
The Weyl transform Aw of an operator d is a function of the phase-space variables q,  p 
defined by 

Aw(q,p) = / ( q  - i Id Iq+$)e ipyFdy .  

This representation of quantum operators allows us to express the quantum-mechanical trace 
of two operators, tr(dB), as a phase-space integral of their Weyl transforms. In particular, 
the average of d is given by 

(A) = // W(q, p,t)Aw(q, P)dpdq 

where the Wigner function W is, up to a constant, the Weyl transform of the density operator 
8. i.e. W = lj(2nR)ew. In terms of the Wigner function, equation (4) can be written as 

W q ,  t )  = /J/dpOdqody W(PO. 40, to)G(q, f ;  qo - ~ / 2 ,  bYG(q. f ;  qo + ~ / 2 ,  to)eiPoYlh. 

(9) 
We now define the family of states [ WQ) as the set of Wigner functions which share the 
same quotient 

Q(qo, Po) = WQ(q0, Po, to)// dpo WQ(q0, Po, to). 

Using the fact that the marginal of the Wigner function is equal to the probability density, 
Q can also be written as Q = ~wQ(@)/P(to). Since the Wigner~function is normalized, Q 
obeys 

(10) 

For Gaussian functions, W is positive everywhere and Q can be viewed as a conditional 
probability Q(polq0); this is not a necessary condition for the validity of our results. 
Comparing (9) with (3), the influence functional is defined as 

F Q k ,  t; 40, to) I d y  G(q, t ;  qo - y / 2 ,  toYG(q, t :  40 + Y/2, to) [dpo Q(qo, po)e’mY’fi. 

(11) 
Taking the complex conjugate and changing the integration variable y to -y. it is easily 
seen that 3 ~ ( 4 ,  t ;  40. to) is a real quantity. 

The influence functional FQ fulfils some, but not all, of the properties of a Green’s 
function. In particular, it does not obey a Chapmann-Kolmogorov type of equation, i.e. in 
general 

/ dpo Q h o ,  PO) = 1. 
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The reason W i g  that the state at t' will not in general belong to the initial family of states 
determined by Q(q0, pa). The explicit dependence of P on Q(q0, PO) has been included in 
(12) to illustrate this fact but will otherwise be omitted. 

3. Factorized initial states 

An important family of states is the set of Wigner functions having the structure 

These states have a Gaussian momentum distribution with mean pm, variance [fi/(2S)I2, 
and no correlation between po and qo. The minimum uncertainty Gaussian packets 

q(qo. to) = (2&-''4ex~I-(q~ - qm)'/4S21 expIipw(qo - q ~ ) b l  

WqO, PO, to)  = ;;i; exp[-(qo - ~ C Q ) ~ / ~ S ' I  ~XP[-~S'(PO - p ~ d ~ / f i ~ l  

(14) 

(15) 

with Wigner function 
1 

having position and momentum widths (square root of the variances) 8 and fi/(26) 
respectively, are particular cases of this family. 

For this family the variables PO and qo are statistically independent so that 
W(qo, po, to) = Q(po)P(qo, to), and Q(p0)  becomes the initial momentum distribution. 
The integral over po can be done explicitly in thii case and the influence functional takes 
the form 

P(q, t; qo, b) = /dyG(q, t; qo - y/2, foYG(q, t ;  qo + y/2, to)  

x exp[(-y2/88') + (ip~y/fi)I. (1 6) 
Once this object is calculated, it has predictive capabilities. In particular, it establishes 
the optimal location of a minimum initial wavepacket with average momentum p~ and 
momentum variance [fi/(2S)Jz in order to obtain maximum probability of the presence in q 
at time t .  The probability density P ( q , t )  is given by the overlap between this functional 
and the initial probability density P(q0, to). 

In general the computation of (16) will be numerical, but in some special cases analytical 
results may be found. 

3.1. Analytical exumples 

For the free particle the propagator is known analytically: 

which, for initial states of the form (13), gives the influence functional 

We shall also calculate the clussicul influence functional corresponding to the initial 
states given by (13) for a square barrier of potential energy VO between 0 and d for 
later comparison with the quantum case. In this section we shall take advantage of the 
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similarities between the Weyl-Wigner formalism and classical ,statistical mechanics. The 
classical distribution function f will play the role of the Wiper function. It obeys 

(19) 

where K ( q ,  p .  t; qo, PO, to) = S(q  - q")S(p - p"), and q" and p" are the position and 
momentum of the trajectory that started at qo and po at time to, respectively. For qo < 0, 
q 2 d, pa > Pb and for times laiger~ than the critical time required to cross the barrier, 

f (q ,  P, r) = //dqodpo K ( q ,  P, f ;  qo, po, to) f (qo ,  PO, to) 

dm 
m 

where pb = (2mVo)l/' is the barrier 'height' in momentum units. Integrating the classical 
phase-space distribution over p .  assuming q > d ,  and assuming an initial state entirely 
localized on the left of the barrier, we obtain the probability density 

=- 21i28,///&'odPodP6'(q - d ' ) d ( P  - p o ) ~ ( p o - P b ) P ( q o )  

= -/dqoP(qo)Lmdp0S(a 21/28 -q")exp[-2d2(po - p ~ ) ~ / h ~ l  

L dpo S q  -q")ex~[-28*(~0 - P W ) ~ / ~ ~ I .  

I I ' l Z f i  

x expI-28*(~0 - PW) /h 1 2 2  

(21) 

where 1-1 is the Heaviside step function. Under these conditions the influence functional is 

(22) 

The integral can be performed with the aid of the delta function taking into account that q" 
is a function of PO: 

H1/2h 

21/28 m 
& d q ,  t; q0.10) = 

In this expression pi is the momentum satisfying the delta function S(q  - q") (see (20)). 

3.2. Numerical example 

Numerical calculations performed for a square harrier potential in the quantum case are 
now summarized. While some qualitative aspects of the following discussion are hown or 
have been stated independently, we emphasize the quantitative character and the predictive 
capabilities of the present approach. 

Influence functionals F(q, f ;  q0,O) for pm = 5 (tunnelling) and pW = 9 (above barrier) 
with 8 = 2, Pb = 8 and t = 7 have been calculated (atomic units are used throughout 
and m = 1) as a function of 40, assuming the factorized form (13) for the initial state at 
time to = 0. The position q has been chosen as follows. Reference minimum Gaussian 
wavepackets (having 6 = 2) with pw = 5 and p m  = 9 centred at qW = -20 at t = 0 are 
evolved numerically with the square barrier potential [13]. At t = 7 the maximum value 
of the transmitted parts is respectively, at 45 = 15.6 and 49 = 42.85. These two values are 
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then used as the parameters to compute the quantum iduence functionals with and without 
the square barrier, F $ b  and 3fm respectively. The classical influence functional, Fcjass, is 
also obtained above the barrier (see figures l (a )  and I@)). 

Figure 1. Influence functional 3(4. I = 7; qo, to = 0) for initial factorized Gaussian states with 
S = 2 (atomic units in all figures). In (a) q = 42.85 and pw = 9 and in (b) q = 15.6 and 
pw = 5. Solid curves, quantum case corresponding to a square barrier between 0 and l/Z with 
momentum height pb = 8 (in (b) the value of fhis influence functional has been multiplied by 
a factor of 100); broken c w e s ,  free propagation (no barrier present); dashed curve, classical 
influence functional for the square barrier. 

The important result is that Fsb is symmetrical With respect to 40 = -20 in both cases: 
the front of the reference packet contributes as much as the rear to the transmitted peak, 
and the main conhibution to the transmitted peak arises from the initial peak. This balance 
would be broken by displacing qw (which can be regarded as a control parameter): for initial 
positions closer to the barrier, qw > -7.0, the rear would conlribute more to the density at 
the chosen values of q and t = 7 ;  for more distant initial positions (qw < -20) the front 
would contribute more. However, when qw deviates from -20, P ( q ,  t )  decreases. Fixing 
qw at -20 and taking the spatial variance of P(q0,O) as a control parameter, the calculated 
F S b  implies that the density P(q,  t )  will decrease for an increasing spatial variance because 
of the smaller overlap between the functional and P(q0,O). 

Compare the ordering of the positions of the maxima (denoted as i )  of the influence 
functionals for free propagation, ih. and for the quantum square barrier case, &,: above the 
barrier (poo = 9). &- < below the barrier (pw = 5). Cjsb c &. These maxima move 
to the right when f < 7 and to the left when t > 7. The classical case is a useful reference 
for transmission dominated by momenta above the barrier. In this case the quantum and 
classical propagations are quite similar [14,15]. The crossing of a square barrier by a 
classical ensemble with non-zero momentum width implies two opposite effects in the 
velocities: At the barrier, the ‘to be transmitted particles’ are slowed down with respect 
to their free motion. However, the transmitted packet emerging from the barrier is on 
average faster than the incident packet because the filtering of momenta performed by the 
barrier and as a consequence, if q is close enough to the barrier, the classically transmitted 
peak will always be delayed with respect to the peak of a packet propagated without a 
barrier. (Without a barrier, classical and quantum packets with identical initial conditions 
in phase space remain identical at all times.) This is reflected in the advanced position of 
the maximum of the classical inhence functional &lsJs with respect to +& for pw = 9, 

< &,I,,, in figure I(a). The saine is true quantally, namely G h  < &. The order 
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& is due to a more severe filtering of the barrier in the quantum case. 
The collision we examine below the barrier is an example of the Hartman effect [16]. 

Hartman discussed several regimes depending on the barrier width and the incident energy 
for packets with an initially sharp energy distribution. (He restricted the momentum width 
of these packets and made it linearly dependent on the average momentum poo.) The 
interesting regime corresponds in the general case (for arbitrary Gaussian packets) to a 
plateau of the average time of arrival at point d, (t)?, as a function of packet width 8, 
and barrier width d, (see figure 2) [17,18]. The domain of the plateau region has been 
quantitatively delimitated in our previous work [17]. 

Figure 2. Average arrival time at the right barrier edge d against d and 6 for p b  = 0, qw = -20, 
pw = 5. 

An important feature of the propagation is that the probability density of the front of 
the free packet is always larger in our numerical calculations than the probability density 
of the transmitted packet, even if the transmitted peak is advanced with respect to the free 
peak. Thus, a mere comparison of peaks is clearly not telling the full story. A free packet 
would provide more particles arriving at an ideal detector at short times than a packet going 
through a barrier. Similar considerations apply for the influence functional: even though 
the relation &b c &e holds, the influence of any point qo in figure l(b) in the free case is 
significantly larger than the influence for the barrier case. 

In summary, the quantum influence functional valid for a family of minimum packets 
with fixed momentum distribution that collide with a square barrier has been calculated 
and compared with classical results and free propagation, for energies above and below the 
barrier. As a function of the initial coordinate qo this functional is symmetrical with respect 
to the value of the maximum (at least to numerica1,accuracy) and it allows the prediction 
of P ( q ,  t )  by modifying the parameters of the initial position distribution P(qo,  to). It has 
been shown that the peak of the transmitted packet is influenced me most by the peak of 
the initial packet. 

4. Influence functional for general (correlated) Gaussians 

We shall obtain the influence functional with the general Gaussian 

WqO, PO, to) = Cexp[-~fA~q; - & Z P ~  - A m P o  - B m  - &POI (24) 



6240 R Sala et a1 

as the initial state. C is a normalization constant 

C = (2n)-l (DetA)1/2e-BA-‘B12 (W 
A is a 2 x 2 symmetric real matrix with positive diagonal elements, and B is a vector with 
two components. Not every Gaussian function given by (24) is a valid quantum state. The 
uncertainty principle has to be satisfied, which implies [19] 

(26) 4 > AllAzz - A;2 > 0. 
Integrating over PO, the corresponding marginal distribution takes the form 

Q(polq0) is obtained by dividing (24) by (27). Note that the resulting expression for 
Q(polq0) is independent of A11 and B1 and, therefore, P(q0, to) may always be chosen 
with arbitrary mean and variance for a given Q (provided that the resulting Wigner function 
is a valid quantum state). Performing the integration over po in (1 I), the influence functional 
takes the form 

%, P; qo, PO) = / dy G(q,  f ;  qo - ~ / 2 ,  to)*G(q, f; qo + y/2, to)  

which is independent of the Gaussian parameters All and B1. If we restrict ourselves to pure 
states, the conditional probability Q(jolq0) starts depending on qo as soon as the minimum 
packet (15) evolves in time. Provided the wavepacket has minimum uncertainty product at 
t = 0, then 

Taking this correlated Gaussian state as the ‘initial state’, then the influence functional is a 
particular case of (28). 

Comparing (29) with (24) we may identify the matrix A and vector B components as 
AI1 = S-’ A22 = (fo/m8)* + (2S/h)’ A12 = -fo/(mS2) 

(30) 
B1 = -qm/6’ BZ = t o q d m S 2 )  - POO(~W)~ .  

If Bz, to and 6 are kept fixed, the density functional built for this initial state is also valid for 
any state at to that was centred in phase space at time zero (when the packets are minimum) 
along the line 

The information we obtain here is, therefore, complementary to the information obtained 
from the factorized case, where pm Was kept fixed within a family of initial states. 

In figure 3 the asymmetric influence functional F(q, f; qo, to) for Q(polq0) taken from 
an evolved, correlated Gaussian is shown as a function of qo. q and t are chosen at the 
transmitted peak corresponding to a reference packet, IC@)), that was a minimum Gaussian 
at t = 0. The function Q(polqo) at to > 0 is obtained from IG(to)), when position- 
momentum correlations are not zero. The shape of the ‘initial‘ state at ro, l(qOlG(tO))l2, is 
also shown. (See details of the numerical data in the figure caption.) Now the front of the 
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evolved packet contributes more than the rear. This result is in qualitutive agreement with 
Bohm's theory [ZO], or with a heuristic classical-like argument: quantum packets evolving 
under free motion are, when expressed in phase space as Wigner functions, identical to 
the distribution functions of the corresponding classical ensembles at all times. In classical 
propagation, as time passes the fast particles advance more than the slow particles and the 
front of the packet becomes predominantly populated by them. The front part can, therefore, 
(here the argument becomes non-rigorous and heuristic) be expected to contribute more to 
the transmitted peak. 

1 .o 

+ 
rO.0 - .  

q o  
Figure 3. In0uence functional F(q = 0.5, t = 7.954: 40. to = 6.19) (solid curve) for the 
function Q@olqo) corresponding to a Gaussian packet at to = 6.19 that was a minimum at 
t = 0. The probability density of this packet at to is also shown (broken curve). At t = 0 this 
packet is centred at pan = 5 and qan = -40 in phase space. A square barrier potential is present 
between 0 and d = 112, with p b  = 8. 

In this calculation the influence functional is much sharper than the Gaussian packet 
(qolC(to)), and selects a well localized portion, relatively close to the peak, of this initial 
state. In contrast, the widths of the influence functionals and the widths of the initial 
Gaussians that were used to determine q. t ,  and Q(polqo) in the factorized Gaussian m e  
of the previous section are very similar, so that the influence was more broadly distributed 
in that case. 

Note that the influence functional may be negative at some points in figure 3, but that 
the overlap of this functional with any of the states in its domain of applicability always 
gives, because of its definition, a positive probability density (see equations (3) and (11)). 

5. Discussion 

We have given a quantitative meaning to the influence of the probability of the presence of a 
particle at a point on its future probability of being at a (generally) different point by means 
of the influence functional. It is, in general, a tool to control collision processes where the 
timing of the scattered part is of interest, for example to interact optimally with another 
prepared particle, or with a localized radiation source. The present study has paid attention 
to the probability density P ( q ,  t ) ;  an analogous treatment is possible for other quantities. 
For example, generalized influence functionals could be constructed by means of the Weyl- 
Wigner formulism to optimize the probability for the presence of the particle in a region 
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qi < q < qr, or to optimize the overlap with a particular state 4. The initial state considered 
can be arbitrazy but its associated influence functional has a domain of applicability, i.e. 
it is valid within a set of initial states. It has been shown that the functional takes simple 
forms for Gaussian states. 

The influence functional has been applied to determine the effect of different parts of the 
initial wavepacket on the peak of the packet transmitted (via tunnelling) through a potential 
barrier [21-28]: paradoxically, some authors recognize that ‘we cannot easily assign a 
portion of the incident wave to each portion of the transmitted wave’, or that ‘there is no 
meaning to the question of which part of the wavepacket gives rise to a given detection 
event’, but simultaneously express the belief that (when the incident wave has evolved and 
developed position and momentum correlations) ‘the peak that emerges consists primarily of 
what was originally in front’, as a possible explanation of the Hartman effect [22,25]. Many 
of these qualitative statements are too vague and unsatisfying as recognized by Landauer 
[22] for example. Our theory provides a definite framework (within sets of initial functions) 
in which these statements can be quantitatively tested. In particular it has been shown that (i) 
the influence functional for the transmitted peak position in a collision involving tunnelling 
does not favour rear or front tails of an initial minimum uncertainty packet and that (ii) 
when the minimum packet starts to evolve and develops position-momentum correlations, 
the front tail becomes more important. 

Does this analysis clarify the paradoxical aspects of the Hartman effect? It certainly 
makes the type of assertion that one can make about influences of different packet regions 
more precise, but in this particular context we would rather stress the limitations of 
the concept of ‘influence’. Different mathematical solutions exist for the kernel 7 in 
equation (3), all of them leading to the same probability density. Do any of them reflect a 
deeper physical reality? Our present understanding of quantum mechanics does not provide 
an answer. Some theories (stochastic or Bohmian mechanics) try to explain the influence in 
terms of trajectories; we do not attempt to do so with the influence functional. Instead, it is 
constructed as an operational tool, and this is its advantage over the other formal solutions. 

The first result (i) is seemingly in contradiction with Bohm’s theory, which assigns the 
transmitted peak to a point of the front tail of the (minimum) initial packet. Let us emphasize 
that both pictures areformally correct, and we do not question the validity of Bohm’s results 
in this sense. We cannot honestly infer from the present work that Bohm’s physicalpicture 
(in terms of causal trajectories) is wrong either. However, we claim that independently of 
the possible existence of a physical trajectory substratum of standard quantum mechanics, 
the influence functional is to be preferred for practical reasons. The important difference is 
that, if the influence functional is known, there is no need to re-calculate the wavepacket 
propagation to predict exactly the value of the probability density P ( q ,  t) when the initial 
state is changed. This means that the influence functional FQ is-within its domain [WQ)- 
independent of the initial state and, therefore, has a predictive power that Bohm’s picture 
lacks. In Bohm’s theory there is, strictly speaking, no influence of a point, but rather an 
influence of a point conditioned to a particular quantum srate. In our approach, the influence 
of the state has been minimized and the conditioning is less severe, namely, each influence 
functional is valid for a family of initial states. Fortunately, there are families of states of 
practical interest. Thus, all non-correlated packets with common momentum distribution 
belong to the same family. 

The reasons why some caution is required in not over-interpreting the results of the 
present analysis are clear: the influence functional is not a transition probability for particles 
since it does not obey a Chapman-Kohnogorov equation and it can be, in principle, negative. 
We can assert, for example, that when using minimum packets as initial states, a given 
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probability density at qo, to is 'causing' (in a statistical sense [29]) the presence of particles 
at q, t with a weight determined by the iduence functional. However, this particular 
'causal' relation does not imply trajectories, nor does it give the right to say that the 
same particles that were at qo will later be at q with probability FQ(~, t ;  qo, to),  no matter 
how tempting this interpretation may be. In this regard, it is worthwhile recalling the 
status of the Wigner function. This is a perfectly respectable quantity useful in a variety of 
applications, and when properly averaged with Weyl transforms of operators associated with 
physical observables provides correct expectation values, even though there is no physical 
interpretation, in general, for its value (which'can also be negative) at a phase-space point. 
In the same vein, the 'influences' that we are considering in this paper are. to be understood 
operationally as useful intermediate objects under an integral sign in equation (3). If one is 
interested in maximizing, minimizing, or fixing the value of P(q,  t )  the influence functional 
FQ indicates how much weight each of the initial points will contribute to this integral when 
the initial state belongs to the set (WQ]. 
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